数字的华容道怎么玩

2024-10-12 04:25:02

1、首先,以4阶数字推盘为例,复原分为3个阶段第一阶段:复原前两行,n阶推盘为前n-2行,第二阶段:将后两行排列为形式,第三阶段:全部复原将推盘各位置命名。第一阶段:依照数字由小到大顺序依次复原1-8一、复原1 2 3 4数字1 2 3的复原比较简单,按照数字大小顺序从1开始,依次复原。在保持已复原较小数字位置不变的情况下,很容易把较大数字移到相应位置,没有什么技术含量。数字4分为两种情况:数字3复原后4恰巧移入相应位置,十分走运。事实上在移动1、2、3过程中稍加留意,可以人为制造直接移入机会,省去下步笨办法。

数字的华容道怎么玩

3、然后,依次移动A4→B4,A3→A4,B3→A3,保持A3、A4不动,将10移至C3,依次移动A3→B3,A4→A3,B4→A4,B3→B4,C3→B3两种情况最后均得到,之后将9、10依次逆时针转入A4、A3,完成。3、将11、12移动至B4、B3注意到移动9、10过程中只用到了A3:C4六格区域。所以保持9、10不变,利用B3:D4六格区域同理可以完成11、12的移动。第三阶段:复原在第二阶段基础上,移动C3:D4四格数字,依次移动9-12与13-15,很容易复原(12→C3,11→B3,13→B4,14→C4,15→D4,如此依次)。

数字的华容道怎么玩

5、然后,复原最后一步13 14 15时会遇到两种情况,不妨设空位为数字0(所设数亨蚂擤缚字并不影响最终结论):把推盘变为一动先铀弥阶排列Ⅰ:(1 2 3 … 12 13 14 15 0)与Ⅱ:(1 2 3 … 12 13 15 14 0)这时每次移动可看作数字0与其它某一数字x的对换(设0所在序数为n,事实上是0与n±1、n±4位置上元素的对换)Ⅰ为正常情况,现考虑如何复原Ⅱ:复原排列Ⅱ等价于对排列Ⅱ进行对换(14,15),问题转化为对换(14,15)能否写成若干个(0,x)对换的乘积。由于一次对换(14,15)改变原排列奇偶性,所以(0,x)对换个数必为奇数。而要将D4处数字0最终移回D4,移动次数必为偶数(上移次数等于下移次数,左移次数等于右移次数),所以排列Ⅱ无法还原为(1 2 3 … 12 13 14 15 0)。也就是说,在保证其它数字位置不变的情况下,无法实现两个数字的位置互换。@高世奇 的回答里有更普遍的证明。

数字的华容道怎么玩
猜你喜欢